Daha çox

NDVI rasterini 0-255 normallaşdırın


NDVI dəyərləri bant 3 və band 4 yansıtma dəyərləri b4-b3 / b4 + b3 istifadə edilərək hesablanan raster dəyərlər. Statistik parametrdə göstərilən mümkün aralıklar -0.35-dən +0.65-ə qədər olmasına baxmayaraq çıxış rasteri 32bit tipli formata malikdir. Bu, heç bir məlumat dəyəri üçün hesablanmayan anormal dəyərlərdən qaynaqlanır. Bəli, onda bu dəyərləri çıxış rasterindən necə silə bilərəm və ya raster kalkulyatorunda NDVI hesablanarkən həyata keçirə bilərəm.

@Whuber. bir yazıda şərh rasteri normallaşdırır, ancaq rasyon şəkillərinə necə baxacağımı başa düşə bilmirəm. müqayisə üçün çəkdiyim 5 şəkil var, amma asanlıqla müqayisə etmək üçün onları necə normallaşdırıram


Yalnız bir deyil, çox sual verirsiniz.

Bu, heç bir məlumat dəyəri üçün hesablanmayan anormal dəyərlərdən qaynaqlanır.

NoData dəyərləri hesablamalardan xaric ediləcəkdir. 0 dəyəri NoData qeyd etmək üçün istifadə olunursa, pis nəticələr əldə edəcəksiniz. Verilərinizin nədən istifadə etdiyini görmək üçün atribut cədvəlini yoxlayın (digər populyar seçimlər -999 və bənzərləri).

statistika parametrində göstərilən mümkün aralıklar -0.35 ilə +0.65 arasındadır.

NDVI dəyərlərinin etibarlı aralığı {-1, 1}. Dəyər aralıklarınız gözlənilən NDVI dəyərləri arasındadır.

NDVI raster 0-255

Bu yaxşı fikir deyil, ancaq bir az cəbrdən istifadə etmək mümkündür.

Yaxşı bir fikir deyildir, çünki şəkillər arasında müqayisə üçün artıq normallaşdırılmışdır (NDVI-də N-nin mənası budur). NDVI dəyərlər aralığı {-1, 1}. Ümumiyyətlə <0 bitki örtüyü deyil,> 0 bitki örtüyü deməkdir. Çox güman ki, müxtəlif piksel həddlərini əl ilə təsnif edilmiş məlumatlarla (bitki örtüyü / bitki örtüyü olmayan) bir yerdə .1-.2 ilə müqayisə edərək NDVI-nızı xüsusi şəkillərinizə kalibrləməli olmalısınız.


NDVI raster 0-255

NDVI dəyərlərini 0-255 geniş bir geniş miqyasda təmsil edə bilməzsiniz, çünki bunun heç bir mənası yoxdur.

NDVI yalnız bitki örtüyü olan və olmayan əraziləri göstərir. Beləliklə, bir növ kolları, qurulmuş əraziləri və ya suyu təmsil etmək üçün bəzi aralıkların alınması əslində düzgün deyil. Çoxları bunu eşik açaraq etməyə çalışsalar da, inanıram ki, bu elmi deyil, amma məlumatlarla oynamaq əylənib.


15. Təsvirin artırılması

Düzəliş üsulları rutin olaraq xam məsafədən algılanan məlumatlardakı həndəsi, radiometrik və digər problemləri həll etmək üçün istifadə olunur. Təsvir məlumatlarını daha asan şərh etmək üçün başqa bir şəkil işləmə üsullarından istifadə olunur. Görüntünün genişləndirilməsi deyilən bu üsullara kontrastın uzanması, kənar genişləndirilməsi və iki və ya daha çox zolaqdakı yansıtma dəyərlərindən fərqləri, nisbətləri və ya digər miqdarları hesablayaraq yeni məlumatlar əldə etmək daxildir. Bu bölmə qısaca olaraq iki genişləndirmə texnikasını nəzərdən keçirir: kontrast dartma və əldə edilən məlumatlar. Daha sonra görünən qırmızı və infraqırmızı infraqırmızı lentlərdən alınan bitki indekslərinin qlobal miqyasda bitki sağlamlığını izləmək üçün necə istifadə edildiyini öyrənəcəksiniz.

Kontrast uzanır

Şəkil 8.16.1-də yan-yana göstərilən cüt cütlüyü nəzərdən keçirin. Hər ikisi də eyni Landsat MSS məlumatlarından istehsal olunsa da, sol tərəfdəki görüntünün sağdakı şəkildən xeyli zərif olduğunu görəcəksiniz. Fərq kontrastın uzanmasının bir nəticəsidir. MSS məlumatlarının 8 bit dəqiqliyi var, yəni əks olunma dəyərləri 256 (2 8) intensivlik səviyyəsi kimi kodlanır. Tez-tez olduğu kimi, aşağıda qismən göstərilən səhnənin yaxın infraqırmızı lentindəki yansımalar xam görüntü məlumatlarında yalnız 30 və 80 arasında dəyişirdi. Bu məhdud aralıq kontrastı olmayan və nəticədə zəif görünən bir görüntü ilə nəticələnir. Sağdakı şəkil yaxın infraqırmızı zolaqdakı yansıtma dəyərləri aralığının 30-80 ilə 0-255 arasında uzanmasının və sonra da görünən yaşıl və görünən qırmızı zolaqların uzanmasının təsirini göstərir. Gördüyünüz kimi, kontrastla uzanan görüntü daha parlaq və daha aydın görünür.

Alınan məlumatlar: NDVI

Multispektral məlumatların bir üstünlüyü iki və ya daha çox dalğa boyu zolaqdakı yansıtma dəyərlərindən fərqləri, nisbətləri və ya digər miqdarları hesablayaraq yeni məlumatlar əldə etmək qabiliyyətidir. Məsələn, sağlam bitki örtüyü arasında stresli bitki örtüyünün aşkarlanması hər bir zolaqda çətin ola bilər, xüsusən ərazinin hündürlüyü və ya yamacındakı fərqlər səhnənin bəzi hissələrinin digərlərindən fərqli olaraq işıqlandırılmasına səbəb olarsa. Ancaq görünən qırmızı zolaqla infraqırmızı zolaqdakı yansıtma dəyərlərinin nisbəti səhnə işıqlandırılmasında dəyişiklikləri kompensasiya edir. İki işıqlandırma dəyərinin nisbəti işıqlandırma şəraitindən asılı olmayaraq stresli bitki örtüyü üçün xeyli aşağı olduğundan, aşkarlama daha asan və daha etibarlıdır.

Sadə nisbətlərdən əlavə, uzaqdan zondlama alimləri çox spektral görüntülərdən faydalı yeni məlumatlar əldə etmək üçün digər riyazi düsturlar da əldə etmişlər. Ən çox istifadə edilən nümunələrdən biri Normalize Fərqlilik Bitki İndeksidir (NDVI). NDVI skorları aşağıdakı alqoritmdən istifadə edərək piksel-piksel hesablanır:

R görünən qırmızı zolağı (MODIS və AVHRR kanal 1), NIR isə infraqırmızı lenti (MODIS və AVHRR kanal 2) təmsil edir. Yaşıl bitkilərdəki xlorofil fotosintez zamanı görünən qırmızı zolaqdakı radiasiyanı güclü şəkildə absorbe edir. Buna qarşı yarpaq quruluşları bitkilərin yaxın infraqırmızı zolaqdakı radiasiyanı güclü şəkildə əks etdirməsinə səbəb olur. NDVI skorları -1.0 ilə 1.0 arasındadır. Görünən zolaqdakı aşağı yansıtma dəyərləri və yaxın infraqırmızı zolaqdakı yüksək yansıtma ilə əlaqəli bir piksel, sağlam bitki örtüyünün olduğunu göstərən 1.0-a yaxın bir NDVI skoru meydana gətirəcəkdir. Əksinə, buludları, qarları və ya suları göstərən, görünən zolaqdakı yüksək yansıtma və yaxın infraqırmızı zolaqdakı aşağı yansıtma ilə əlaqəli olan NDVI piksel skorları. 0-a yaxın NDVI skorları qaya və bitki örtüyü olmayan torpağı göstərir.

NDVI tətbiqləri lokaldan qlobal səviyyəyə qədər dəyişir. Yerli miqyasda Kaliforniyanın Napa Vadisindəki Mondavi Üzüm Bağları, bitki sağlamlığının izlənilməsində NDVI məlumatlarının faydasını təsdiq edə bilər. 1993-cü ildə üzüm bağları köklərə hücum edən və pestisidlərə qarşı təsirsiz olan bitki bitlərinin bir növü olan filloksera istilasına məruz qaldı. Zərərverici xəstəliyi yalnız yoluxmuş üzümləri çıxarıb daha davamlı kök fondu ilə əvəz etməklə aradan qaldırmaq olardı. Üzüm bağı bir konsaltinq şirkətinə havadan gələn bir sensor istifadə edərək ardıcıl böyümək mövsümlərində görünən və yaxın infraqırmızı görüntülər əldə etmək tapşırığı verdi. İki fəslin məlumatları yenidən qeydiyyata alındıqdan sonra NDVI skorlarının müqayisəsi üzüm örtüyünün sıxlığının azaldığı sahələri aşkar etdi. NDVI dəyişikliyinin aşkarlanması o qədər məhsuldar bir yanaşma olduğunu sübut etdi ki, üzüm bağları ümumi həssas əkinçilik strategiyasının bir hissəsi kimi onu rutin istifadə üçün qəbul etdi (Colucci, 1998). Daha bir çox son iş çoxdur.

Növbəti səhifədə təsvir edilən işdə qlobal bir NDVI məlumat dəsti istehsalında iştirak edən görüntü işləmə addımları təsvir edilmişdir.


Bu seriyanı tamamlamaq üçün lazım olan şeylər

Quraşdırma RStudio

Dərs seriyasını tamamlamaq üçün R-nin yenilənmiş bir versiyasına və tercihen kompüterinizdə quraşdırılmış RStudio-ya ehtiyacınız olacaq.

R, statistik hesablama sahəsində ixtisaslaşmış bir proqramlaşdırma dilidir. Bu məlumatların təhlili üçün güclü bir vasitədir. R ilə qarşılıqlı əlaqə qurmaq üçün interaktiv inkişaf mühiti (IDE) olan RStudio-nu tövsiyə edirik.

R paketlərini quraşdırın

Hər dərs ilə paketləri quraşdırmağı seçə və ya lazım olan bütün R paketlərini indi yükləyə bilərsiniz.

  • raster: install.packages ("raster")
  • rgdal: install.packages ("rgdal")
  • rasterVis: install.packages ("rasterVis")

ggplot2: install.packages ("ggplot2")

R-dəki Paketlər haqqında daha çox - Proqram Dülgərliyindən Uyğundur.


3 Cavablar 3

Yalnız RGB lentlərini (alfa deyil) və ya hər hansı bir qrupu göstərmək üçün şou metodu ilə birlikdə oxu metodundan istifadə etməlisiniz.

Bantların sırası vacibdir və TIFF-dən asılı olaraq fərqli qaydada sifariş verilə bilər. Məlumat sənədləri lent sifarişinin nə olduğunu əks etdirməlidir və inşallah məlumatın özündən oxuna bilər (mənim təcrübəm belə olmur).

Əvvəlcə lent etiketlərini yoxlamağa cəhd edə bilərsiniz (buna baxmayaraq hələ də sənədlərə müraciət etmək istəyirsən).

Orada heç bir şey etiketlənməyibsə, məlumat sənədlərinə müraciət etməlisiniz.

Tutaq ki, BGRN (NIR-də olduğu kimi - infraqırmızı yaxınlıqda) olaraq sifariş edilən 4 lent var, sonra ilk üç zolağı istərdiniz, əksinə.


Torpaqdan İstifadənin / Torpaq örtüyünün dəyişməsinin peyk məlumatlarından istifadə edərək quru səthinin temperaturuna təsiri: Qərbi Benqal, Şimali 24-Parganas Bölgəsi, Rajarhat Blokunun Bir Tədqiqatı

İndiki qlobal istiləşmə ssenarisində böyüyən şəhər ərazilərinin quru səthindəki temperaturun (LST) artması şəhər planlaşdırmaçılarının narahatlığına səbəb olur. Bu işdə, Torpaq istifadəsi / torpaq örtüyü (LULC) dəyişikliyinin 165 km 2 ərazini əhatə edən Qərbi Benqal, Şimali 24-Parganas Bölgəsi, Rajarhat bloku və ətrafındakı ərazinin LST-yə təsiri müzakirə olunur. Landsat 5 TM (1990), Landsat 8 OLI (2016) və Sentinel 2A (2016) -dan çox spektral və çox-müvəqqəti peyk məlumatları LULC xəritələşdirilməsində və Landsat 5 TM və Landsat 8 TIRS (2016) termal infraqırmızı məlumatlarında istifadə olunur. ) 1990 və 2016-cı il LST-nin qiymətləndirilməsi üçün istifadə edilmişdir. Nəticələr göstərir ki, 1990-cı ildən 2016-cı ilə qədər Rajarhat-da Noyabr ayında torpaqdan istifadə qaydaları dəyişmişdir: şəhərsalma nəticəsində 13 km 2 bitki örtüyü itirilmiş 9,3 km 2 açıq torpaq əkinçilik ərazisinə çevrilmişdir və açıq sahələr / parklar 1,4 km 2 su örtüklü hovuzlar ağac örtüyünə / əkin sahələrinə çevrilmiş və 1,45 km 2 göllər / hovuzlar doldurulmuşdur. Bitki örtüyünün (skrublend və ağac) örtüyünün itirilməsi LST-nin təxminən 1,5 ° C yüksəlməsinə səbəb oldu. Balıqçılıq hovuzları, LST artımına qarşı durma qabiliyyətinə malikdir, çünki bu sinifdəki temperatur artımı, ərazisinin artması səbəbindən yalnız 0.24 ° C-dir. 26 il ərzində torpaqdan istifadə qaydalarındakı bu dəyişiklik LST-i 0,94 ° C artırdı. Şəhər-istilik adası (UHI) fenomeni də artdı. UTVFI təsnifat sxeminə görə 'ən güclü' ada fenomeninin sahəsi 20,1 km 2 artmışdır. Şəhər ərazilərinin NDBI ilə LST arasında müsbət korrelyasiya müşahidə olunur (r = 1990 və üçün 0.002 r = 2016-cı il üçün 0,047), şəhərsalmanın LST-də artımdan məsul olduğunu göstərir. NCEP NOAA səth temperaturu modeli, Rajarhat üzərindəki maksimum LST artımının uzunmüddətli meyllərinin, 1990-cı ilin yanvarından 2016-cı ilin noyabrına qədər peyklərdən çıxarılan LST məlumatlarını doğrulayan% 90 etibar səviyyəsi ilə təxminən 1 ° C olduğunu göstərir. Şəhər meşəçiliyi, su obyektləri və fəvvarələrin inşası, mövcud su mədəniyyəti gölməçələrinin qorunması və tikinti fəaliyyətinin azaldılmasını əhatə edən LST-də artımın dayandırılması üçün davamlı şəhərsalma tələb olunur.

Bu abunə məzmununun önizləməsidir, təşkilatınız vasitəsilə giriş.


Vəhşi ərazilərin yanğın təhlükəsini qiymətləndirmək üçün bir üsula ehtiyac, ən azı 1940-cı ildə, Utah, Ogden şəhərində, ABŞ Kənd Təsərrüfatı Nazirliyinin Meşə Xidməti tərəfindən çağırılan yanğın nəzarət konfranslarında qəbul edildi. 1954-cü ilə qədər ABŞ-da bir neçə yanğın təhlükəsi qiymətləndirmə sistemi istifadə edildi. 1958-ci ildə Washington Ofisi, Aviasiya və Yanğın İdarəetmə şöbəsi John Keetch, milli bir sistem inkişaf etdirmək üçün bir qrupa rəhbərlik etdi. 1964-cü ilə qədər ABŞ-dakı əksər yanğın nəzarəti təşkilatları & quotspread index & quot sistemindən istifadə edirdilər. 1968-ci ildə Kolorado ştatının Fort Collins şəhərində nəm mübadiləsi, istilik ötürülməsi və problemin digər məlum cəhətlərinə əsaslanan analitik bir sistem inkişaf etdirmək üçün başqa bir tədqiqat səyləri quruldu (Bradshaw et al. 1983). Nəticədə çıxan yanğın yayılma modeli (Rothermel 1972), 1972-ci ildə tətbiq olunan ilk həqiqətən Milli Yanğın Təhlükəsi Qiymətləndirmə Sistemində (NFDRS) istifadə edilmişdir (Deeming et al. 1972, revised 1974). Bu sistem o vaxtdan bəri 1978-ci ildə (Deeming et al. 1977) və 1988-ci ildə (Burgan 1988) iki dəfə revize edilmişdir.
Yanğın idarəedicilərinin verəcəyi qərarlar, müvəqqəti və məkan miqyaslarından və idarəetmə hədəflərindən asılı olmalıdır. Presupressiya qərarlar tez-tez yanğın söndürmə fondlarının, işçilərinin və avadanlığının ayrılmasına yönəldilir. Bu cür qərarlar ümumiyyətlə milyonlarla hektar ərazini əhatə edən geniş bir məkan kontekstinə və 1 ilə 3 gün arasında bir vaxt miqyasına malikdir. Yanğın baş verdikdən sonra ilkin hücum və yatırma qərarları, atəşin səmərəli idarə olunmasına yönəldilir. Bura, əvvəlcədən müəyyən edilmiş məhdudiyyətlər daxilində yanma halında yanğının basdırılmaması qərarı daxil ola bilər. Bu qərarların məkan miqyası bir neçə min hektar, müvəqqəti miqyası isə 24 saat və ya daha azdır. Yanğının söndürülməsinə qərar verildikdən sonra, bir neçə yüz hektar və ya daha az məkan miqyasında və bir neçə dəqiqədən bir neçə saata qədər müvəqqəti miqyasda qərarlar tələb olunur. ABŞ-da vəhşi ərazilərdəki yanğına münasibət sadəcə söndürməkdən yanğının meşə sağlamlığının qorunmasında rol oynamalı olduğunu başa düşməyə doğru dəyişir, beləliklə təyin olunmuş yanğınlara ehtiyac qəbul edilir (Mutch 1994). Həm yanğın potensialını həm strateji, həm də taktiki cəhətdən qiymətləndirmə üsulları da inkişaf etməlidir.
Hər hansı bir miqyasda yanğın potensialının qiymətləndirilməsi, potensial yanğın mühitini yaratmaq üçün birləşən yanacaqlar, topoqrafiya və hava şəraiti haqqında eyni məlumatı tələb edir. Bu amillər ənənəvi olaraq konkret sahələr üçün ölçülmüşdür, nəticədə alfa ədədi mətn şəklində çıxan yanğın potensialı təxminləri və qeyri-müəyyən şəkildə müəyyən edilmiş coğrafi ərazilərə və müvəqqəti dövrlərə tətbiq olunan nəticələr, daha birinin yer dəyişdirildiyini bilməklə (zaman və ya məkan daxilində) ) bu cür ölçmələrin aparıldığı nöqtədən yanğın potensialının tətbiqi daha az tətbiq olunur. Bu vəziyyət sürətlə dəyişir, çünki Coğrafi İnformasiya Sistemləri (CİS) və kosmosdan alınan müşahidələr atəş potensialını daha incə məkan və müvəqqəti həlldə qiymətləndirmə qabiliyyətini xeyli artırır.
Yanğın potensialının qiymətləndirilməsi texnologiyasındakı son inkişaflar həm geniş miqyaslı yanğın təhlükəsi xəritələrini, həm də yerli miqyaslı yanğın davranışı simulyasiyalarını əhatə edir. Yerli miqyaslı yanğın davranışı kontekstində FARSITE (Finney 1994) və BEHAVE (Burgan and Rothermel 1984, Andrews 1986, Andrews and Chase 1989), bir neçə min hektara qədər ərazilərdə yanğın davranışını simulyasiya etmək üçün metodlar təqdim edirlər. Geniş ərazidə yanğın təhlükəsi kontekstində, xüsusi hava stansiyalarında NFDRS istifadə edərək hesablanan yanğın təhlükəsinin nöqtə ölçüləri interpolasiya olunur və Wildland Yanğın Qiymətləndirmə Sistemi (Burgan və digərləri 1997) vasitəsi ilə milli əsasda xəritələnir (Şəkil 1) (http://www.fs.fed.us/land/wfas/welcome.html).

Şəkil 1. Milli Yanğın Təhlükəsi Qiymətləndirmə Sistemi indeksləri hər bir hava stansiyası üçün hesablanır, sonra göstərilən ştat səviyyələri interpolasiya olunur və milli əsasda xəritələnir (http://www.fs.fed.us/land/wfas/fd_class.gif)

Kanadalılar internetdə yanğın təhlükəsi sistemi üçün oxşar xəritələr dərc edirlər (http://www.nofc.forestry.ca/fire/cwfis) (Lee 1995) (Səhmlər və digərləri 1989). ABŞ xəritələri kadr səviyyələrinin tərs məsafədə kvadrat ağırlığında istifadə edilməklə istehsal olunur. İşçi heyəti səviyyəsi yatırma təşkilatının hazırlıq vəziyyətini müəyyənləşdirir. Cari yanğın təhlükəsi indeksinin tarixi dəyərlərlə müqayisəsinə əsaslanır. Cari indeks tarixən yüksək dəyərlərə yaxınlaşdıqca işçi heyəti (və ya hazırlıq) səviyyəsi artır. Birləşmiş Ştatlardakı yanğınsöndürənlər heyət səviyyələrini əsas götürəcək bir NFDR indeksi seçmələrində ardıcıl olmadığından, işçilər səviyyəsinin özü yanğın təhlükəsinin xəritələnəcəyi yeganə ümumi parametrdir. İşçi heyəti səviyyəsi bütün indeksləri öz tarixi dəyərlərinə qarşı normallaşdırır, buna görə bir neçə yanğın təhlükəsi indeksindən hansının bir yanğın meneceri seçilməsinin əhəmiyyəti yoxdur. Lakin bu metod nə topoqrafiyanın yanğın potensialına təsirini həll edir, nə də müəyyən yerlər və ya landşaft qətnamələri üçün yanğın potensialı qiymətləndirmələrini təmin edir.
1 km 2 mənzərə həllini təmin edən əməliyyat prosesi Oklahoma Yanğın Təhlükəsi Qiymətləndirmə Sistemidir (Carlson et al. 1996) (http://radar.metr.ou.edu/agwx/fire/intro.html), hələ də topoqrafiyanın təsirini tanımır. Oklahoma Yanğın Təhlükəsi Qiymətləndirmə Sistemi Birləşmiş Ştatlar üçün gələcəkdə yanğın təhlükəsi sistemlərinin araşdırılması istiqamətini təmsil edir, lakin güvəndiyi intensiv hava şəbəkəsi bu tip sistemlərin digərlərinin tətbiqini çətinləşdirə bilər.
Vəhşi ərazi yanacaq xəritəsi, ərazi məlumatları və havanın ağlabatan bir seçilməsi yanğın təhlükəsi sistemlərinin əksəriyyətinə girişdir. Bu sənəd Amerika Birləşmiş Ştatları üçün milli 1 km 2 yanacaq model xəritəsinin hazırlanmasını müzakirə edir və yanğın təhlükəsini 1 km 2 çözünürlükdə qiymətləndirmək üçün istifadə edilə bilən bir Yanğın Potensialı İndeksi (FPI) modelini təsvir edir.


Coğrafi informasiya sistemləri (CİS)

Vektor nəzarətçiləri və sahə bioloqları üçün müasir coğrafi informasiya sistemlərinin (CİS) üstünlükləri, məlumatları həm məkan həm də müvəqqəti formatda saxlamaq, əyani analiz etmək və hesabat verməkdir (Freier & Flannery, 1998). CİS bir çərçivədə inteqrasiya olunmuş proseslər təqdim edir - ən yaxşı halda qərar qəbul etmək üçün interaktiv şəkildə istifadə edilə bilən coğrafi istinad məlumatlarının daxil edilməsi, saxlanılması, təhlili, modelləşdirilməsi və göstərilməsi üçün ‘beşikdən qəbrə’ sistemi. Yetkin GIS, görüntü işləmə, məlumat bazası idarəetməsi, kartoqrafik ekran, xəritənin rəqəmləşdirilməsi / tarama modelinin inkişafı, coğrafi və statistik analizlər üçün sistemlərdən ibarətdir. Geo-referans, bilinən bir koordinat istinad sistemi tərəfindən təyin olunduğu bir məlumat qatının (və ya əhatə dairəsinin) məkan yerinə istinad edərək bütün CİS prosedurlarının təməl daşıdır. CİS proqramı ya vektor (qövs əsaslı), ya da raster (şəbəkə əsaslı) ola bilən əsas memarlığı ilə təsnif edilir. Vektorlu ekoloqlara yönəlmiş bu icmalın məqsədləri üçün 'vektor' mənası ilə bağlı qeyri-müəyyənliyin qarşısını almaq üçün arc və grid terminlərindən istifadə edəcəyik.

Qövs əsaslı CİS

Qövslər həm böyüklüyə, həm də istiqamətə sahib olan hər hansı bir dəyişən kəmiyyəti, yəni mütləq koordinatlarla təsvir edilə bilən məlumatları təsvir edir (məs. xy). Bura nöqtələr, xətlər və sahələr (çoxbucaqlar) daxildir. Hər bir qövsün əlaqəli atribut məlumatları var (z) əlaqəli verilənlər bazasında cədvəl şəklində saxlanılır. Bu cür məlumatlara coğrafi istinad üçün lazım olan məlumatlar koordinat istinad sistemini (məs. En və boylam), istinad vahidlərini (məs. Metr) və ya 'sərhəd düzbucağının' künclərinin koordinat mövqeyini - sərhədi müəyyənləşdirməyi əhatə edir. eşlenen ərazinin - və ya birdən çox referans nəzarət nöqtəsinin.

Ticarət sektorunda və dövlət idarələrində geniş yayılmış işləyən standart standart qövslü GIS, ArcInfo ® (Ətraf Sistemləri Araşdırma İnstitutu Inc, ESRI, Redlands, CA, ABŞ). Buna görə, bu proqram xəstəlik vektorları üzərində çoxsaylı tədqiqatlarda istifadə edilmişdir (məsələn, Wood) və s. 1992 Nicholson & Mather, 1996 Pender və s. 1997 Sharma & Srivastava, 1997). ArcInfo ® inzibati, bioloji, demoqrafik və ətraf mühit məlumatlarının örtükləri müxtəlif beynəlxalq, milli və yerli təşkilatlar tərəfindən saxlanılır və dərhal ArcInfo GIS vasitəsi ilə əlavə işlənmədən istifadə edilə bilər. Bu örtüklər birbaşa müttəfiq ESRI proqramı ArcView-a daxil edilə bilər. ÜST / UNİCEF-in Xalq Sağlamlığı üçün Məlumat İdarəetmə və Xəritəçəkmə üzrə Birgə Proqramı (Mott və s. 1995 Nuttall və s. 1998 WHO, 1999 WHO / Unicef ​​1999), ArcView (Map Objects) ilə eyni proqram quruluşundan istifadə edərək, müxtəlif miqyasda məlumatların (ArcInfo örtükləri daxil olmaqla) hazır inteqrasiyasına imkan verən müştəri üçün uyğunlaşdırıla bilən 'Healthmapper' Xəritəçəkmə vasitəsi yaratdı. rayon, il, milli, regional və qlobal.

Rəqəmsal formatda məlumatlar mövcud deyilsə, istifadə olunan CİS proqramına uyğun bir rəqəmsallaşdırıcı tablet və proqram istifadə edərək nöqtələri və ya xətləri rəqəmləşdirməklə bu düzəliş edilə bilər. Məsələn, topoqrafik xəritədəki konturlar rəqəmləşdirilə bilər, istinad nöqtələri (lər) i ilə kalibrlənə bilər və Rəqəmsal Yüksəklik Modeli (DEM) əhatə dairəsi yaradılır. Bu tapşırıq çox vaxt aparan və nəticədə baha başa gələ bilər, lakin tədqiqatçıya son məhsuldakı məhdudiyyətlər və ya səhvlər barədə daha çox məlumat vermə üstünlüyü var.

ArcInfo sisteminin çatışmazlıqları onun mürəkkəbliyi və qiymətidir. Texniki tərəzinin aşağı hissəsində EPIMAP gəlir - ABŞ Xəstəliklərin qarşısının alınması və İdarəetmə Mərkəzləri (Atlanta, GA, ABŞ) tərəfindən epidemioloqlar üçün hazırlanmış sadə bir xəritəçəkmə proqramı. Bu iki hədd arasında, yayılmış epidemioloji və entomoloji tədqiqatlarda istifadə olunan yay əsaslı CİS proqramı ATLAS ®, ArcView ® (ArcInfo format sənədləri üçün məlumat sorğu mühərriki rolunu oynayır) və masa üstü Xəritəçəkmə proqramı MapInfo ® (yuxarıya bax) daxildir.

Şəbəkə əsaslı CİS

Şəbəkə əsaslı CİS, görüntünün bir ızgarada düzülmüş kiçik, daxili vahid hüceyrələrdən ibarət olduğu təsvirləri əks etdirən bir sistem istifadə edir. Bu tip təşkilat, peyk görüntüləri, iqlim və topoqrafiya kimi davamlı məlumat səthləri üçün xüsusilə faydalıdır. Şəkillər peyklərdən bir məlumat axını olaraq alınır və vizuallaşdırmaq üçün üfüqi tarama xətləri nümunəsinə çevrilir. Şəbəkə əsaslı şəkillər d tərəfindən coğrafi istinad tələb edirx /dy proyeksiya mərkəzi və ya görüntünün həqiqi sərhədləri / kənarları üçün koordinatlar. Vektorlu ekoloqlar tərəfindən istifadə olunan şəbəkə əsaslı proqram paketləri, Aclıq Erkən Xəbərdarlıq Sistemləri (FEWS) üçün hazırlanmış və məhsul izlənməsində istifadə olunan IDA / WINDISP kimi sərbəst şəkildə əldə edilə bilən 8 bitlik görüntü işləmə paketlərini əhatə edir. IDRISI ® (http://www.clarklabs.org) ABŞ-ın Clark Universiteti tərəfindən hazırlanan məşhur bir giriş səviyyəli proqram paketidir 'ERDAS Imagine ®' peyk görüntülərinin ətraflı izahı üçün geniş istifadə olunur ArcGrid ® əlaqəli şəbəkə modulu və 'Spatial Analyst ®', ArcView ilə istifadə üçün şəbəkə əsaslı bir moduldur. Şəbəkə əsaslı CİS adətən entomoloji və / və ya epidemioloji məlumatların ətraf mühit məlumatları ilə təhlili üçün ən uyğun sistemdir.

Rəqəmsal verilənlər bazaları

Kontinental, regional və yerli əhatə dairəsinə malik geniş məkan məlumat bazaları getdikcə daha da genişləndirilir (Cədvəl 3). Bunların bir çoxu digər sektorların ehtiyacları nəzərə alınmaqla inkişaf etdirilmişdir (məsələn, kənd təsərrüfatı, təbii ehtiyatların planlaşdırılması və turizm), lakin vektor tədqiqatlarında istifadə üçün son dərəcə dəyərlidir. Məsələn, Kitron zaman İllinoys ştatı üçün geniş bir dövlət səviyyəsində Arc / Info örtüklər dəsti mövcud idi və s. (1991) gənənin eko-paylanmasını araşdırmağa başladı Ixodes dammini Spielman və s. 1979 (s. I. scapularis Lyme xəstəliyinin bir vektoru olaraq 1823) deyin. Gənə varlığını ətraf mühit faktorları ilə əlaqələndirmək üçün gənə ilə qarışıq olan maralın torpaq və bitki örtüyündə paylanmasını üst-üstə qoydular. Bu, gənə paylanmasının fokus xarakterini və qumlu torpaq və sərt ağaclarla əlaqəsini ortaya qoydu. Əvvəlcə bitki örtüyünün öyrənilməsi üçün istifadə olunan kontinental miqyaslı NDVI verilənlər bazaları, Afrikada tsetse paylanması ilə əlaqəli amillərin araşdırılmasında geniş istifadə edilmişdir (Rogers & Williams, 1994).

Dəqiqlik

Bu verilənlər bazalarını müvəffəqiyyətlə istifadə etmək üçün məhdudiyyətləri və üstünlükləri aydın şəkildə başa düşülməlidir. Rəqəmsal verilənlər bazaları ilə əlaqəli bir problem, istifadəçinin yaradılış prosesindən uzaq olması və buna görə də məlumat keyfiyyəti məsələlərinə tez-tez məhəl qoyulmamasıdır. Bir çox verilənlər bazası ümumi məhsula aid edilə bilən dəqiqlik səviyyəsini göstərən sənədlərlə təmin olunur. Lakin bir çox səbəbdən dəqiqlik fəza baxımından və zamanla dəyişir, bu səbəbdən məlumatların keyfiyyəti coğrafi əraziyə və digər meyarlara görə xeyli dəyişir. Məsələn, EROS Məlumat Mərkəzi (Cədvəl 3-ə baxın) ABŞ Geoloji Tədqiqatının Afrika üçün Rəqəmsal Yüksəklik Modelini (Dünyanın Rəqəmsal Qrafikindən) 2000 m üfüqi səhvlə məhdudlaşdırılmış dəqiqlik və ± 650 m şaquli səhv ilə 90% etibarlılıq yaratmışdır. . Bu səbəbdən intuitiv olaraq, şaquli səhv, üfüqi müstəvidəki kiçik səhvlərin şaquli müstəvidə böyük səhvlərə səbəb olduğu ən möhkəm dağ ərazilərindədir. Bu qeyri-müəyyənliyi vizual olaraq göstərmək üsulları, çox istifadə olunan CİS proqramına daxil edilməmişdir.

Kategorik məlumatların şəbəkə əsaslı səthləri müəyyənlik baxımından xüsusilə məhdud ola bilər, çünki dəyişən hər bir grid kvadratı üçün yalnız bir kateqoriyaya aid ola bilər. Məsələn, FAO-UNESCO-nun Afrikanın torpaq xəritəsi rəqəmsal formatda və kağız üzərində yazılmışdır. Rəqəmsal məlumatlar Thomson tərəfindən istifadə edilmişdir və s. (1999b) kəpənəyin paylanmasını məhdudlaşdıran ekoloji parametrləri təyin etməyə çalışarkən Phlebotomus orientalis, Sudandakı viseral leişmaniozun vektoru. Phlebotomus orientalis şərqi Sudanda və qərbi Efiopiyada geniş yayılmış gildən zəngin vertisollarla ("qara pambıq" torpaqları deyilir) güclü bir şəkildə əlaqələndirilir. Vertisollar FAO-UNESCO xəritəsində həll etmək üçün çox kiçik olan digər torpaq sinifləri daxilində diskret və ya dar xətti komplekslər kimi tez-tez baş verir. Kağız xəritə vərəqlərini müşayiət edən mətn cədvəlləri, xəritənin qətnaməsinin altındakı tərəzilərdə əlaqəli və ya daxil torpaq qruplarının mövcudluğunu göstərməklə kompensasiya edir, lakin bu məlumat rəqəmsal xəritəyə daxil edilmir. Alternativ olaraq, NDVI, bəzi bölgələrdə fərqli torpaq növlərinin, xüsusən də vertisolların seçilməsi üçün yaxşı bir göstərici ola bilər - Farrarın tapıntılarına görə və s. (1994) Botsvanada. 1 km çözünürlüklü NDVI məlumatları (və ya digər peykdən əldə edilmiş məhsullar) istifadə edərək, vertisolların yer səthində meydana gəlməsini və dolayısı ilə potensial paylanmanın xəritəsini çəkmək mümkün ola bilər. P. orientalis (Şəkil 2).

Sudandakı visseral leyşmaniozun (kala azar) ilkin risk xəritəsi, ehtimalına əsaslanaraq Phlebotomus orientalis varlıq. Modelin yaradılması üçün istifadə olunan məlumatlar torpaq növü, yağış və orta illik gündəlik maksimum temperaturdan ibarətdir. Humara = Qərbi Tigray, NW Efiopiya: epidemiya sahəsi = WUN = Cənubi Sudanın Qərbi Yuxarı Nil əyalətində 1988-ci ildən bəri böyük epidemiya sahəsi (Thomson) və s. 1999b).

Afrika üçün Topoqrafik və İqlim Məlumat Bazası (Hutchinson) kimi meteoroloji stansiya məlumatlarından yaradılan iqlim səthləri və s. 1995) tədqiq edilmiş məlumat növünə görə dəyişən məhdudiyyətlərlə müxtəlif məkan təhlili və interpolasiya üsullarından (Cədvəl 3) yaradılmışdır. Məsələn, Hay & Lennon, (1999), bir il ərzində Afrika daxilində aylıq iqlimin məkan dəyişməsini proqnozlaşdırmaq üçün peyk məlumatlarının (Meteosat və AVHRR) nəticələri ilə meteoroloji stansiyalardan alınan məlumatların məkan interpolasiyası ilə müqayisə etdi. Stansiya məlumatlarının kosmik interpolasiyasının temperaturu daha yaxşı proqnozlaşdırdığını, CCD-nin uzaqdan zondlanması isə yağışın daha yaxşı proqnozlaşdırıcısı olduğunu aşkar etdilər.

Peyk məlumatları, onların yaranmasında iştirak edən nümunə götürmə prosedurlarından irəli gələn məkan və müvəqqəti səhvlərə malikdir. Yuxarıda qeyd edildiyi kimi, əvvəlcədən işləmə üsullarındakı fərqlər NDVI məlumat arxivləri arasında əhəmiyyətli fərqlərə səbəb ola bilər. Robinson 1996), vektor tədqiqatlarında geniş istifadə olunan (məsələn, Rogers) ARTEMIS-dən (məkan qətnaməsi 7,6 km, müvəqqəti qətnamə 1 dekad, zaman seriyası 1981–91) NDVI məlumatlarının özünəməxsus problemlərini araşdırdı. və s. 1996 Baylis və s. 1998). Bir Şərqi Afrika tədqiqat sahəsi üçün Robinson (1996), məkan çözünürlüğü, piksel yeri, seçmə yanlılığı, sistematik səhvlər və məlumatların çox müvəqqəti profillərində siqnal səs-küyünün olması baxımından ARTEMIS məlumatlarının dəqiqliyini qiymətləndirmişdir. Bu amillər, xüsusən kiçik tədqiqat sahələrində yerdəki xüsusi yaşayış yerlərini ayırmaq üçün məlumatların etibarlılığına ciddi məhdudiyyətlər gətirən əhəmiyyətli səhvlər yaratdı. Robinson (1996) bu kobud qətnamə məlumat dəstləri üçün tətbiqetmələrin daha da inkişaf etdirilməsində bu cür səhvlərin nəzərə alınmalı olduğu qənaətinə gəldi. Sannier və s. (1998) ayrıca FAO-ARTEMIS-dən NDVI şəkillərinin və NASA Pathfinder-dən bu yaxınlarda düzəldilmiş NDVI dəyərlərinin müqayisəsində, bu iki arxiv arasındakı əhəmiyyətli və sistematik fərqləri - uyğun düzəlişlər edilmədən birlikdə istifadə edilməməli olduqlarını göstərir.

Faylların formatı

Fayl formatı onun ölçüsünə və işlənmə sürətinə təsir göstərir. Məsələn, Windows üçün IDRISI istifadə edərək, Image sənədləri ASCII, ikili və ya qablaşdırılmış ikili olaraq saxlanıla bilər, tədricən yaddaş sahəsinə qənaət edər, lakin giriş / istifadə sürətini azaldır. Hər bir məlumat faylı istinad proyeksiya sistemini, istinad vahidlərini və şəkil künclərinin koordinatlarını təsvir edən sənəd sənədləri ilə əlaqələndirilir. Bəzi zəruri tələblər (məsələn, referans proyeksiya və vahidlər) müəyyən bir analizdə istifadə olunması üçün bütün sənəd sənədləri üçün ümumi olmalıdır

Proqnozların xəritələşdirilməsi

Bütün Xəritəçəkmə proseslərinə xas bir problem, düz bir xəritə səthində Yer kürəsinin qıvrımını mükəmməl şəkildə əks etdirməyin mümkünsüzlüyüdür. Bu səbəbdən bütün xəritələr məsafələri təhrif etməli və geniş ərazilərdə bu təhriflər əhəmiyyətli ola bilər (Steinwand və s. 1995). Bir xəritə proyeksiyası seçimi, təmsil ediləcək sahənin ölçüsünə və formasına bağlıdır. Xəritə proqnozları bərabər ərazi, konformal və bərabər məsafəli olaraq təsnif edilə bilər. Bərabər ərazi xəritəsi proqnozları nominal olaraq qlobal və kontinental məlumat dəstləri üçün ən az mümkün forma və məsafələrin təhrif olunmasına səbəb olur. Digər proqnozlar üçün təhrif problemləri tədqiqat sahəsi ilə mütənasibdir. Daha böyük və kiçik ərazilərdəki məlumat dəstlərini ümumi bir xəritəyə birləşdirərkən bu nəzərə alınmalıdır.

Məlumat inteqrasiyası

Fərqli mənbələrdən alınan məlumatları birləşdirmək üçün ortaq bir fayl formatı, xəritələşdirmə proyeksiyası və miqyaslı sistem tətbiq etmək lazımdır. Bütün CİS-lər bir sıra fayl idxal, ixrac və yenidən nəzərdən keçirmə imkanları ilə təchiz olunur və ehtiyac duyulanların mövcudluğunu əvvəlcədən yoxlamaq tövsiyə olunur. İnteqrasiya prosesləri, məs. məlumatları yenidən böyütmə, yenidən tərtib etmək, arc-bazadan grid-bazaya çevirmək (vektordan rasterə)) və əksinə, istər-istəməz işlənmiş məlumatlarda daha çox səhvlər təqdim etmək.

CİS prosedurları

Şəbəkə əsaslı CİS paketləri ümumiyyətlə aşağıdakı imkanları əhatə edir:

verilənlər bazası sorğusu yenidən təsnifat, üst-üstə qoymaq, cədvəl / statistik ümumiləşdirmə üçün

xəritə cəbr xəritə qatlarını riyazi olaraq birləşdirmək üçün

kontekst operatorları qonşuluq və ya yerli operatorlardan istifadə edərək mövcud xəritədən yeni bir xəritə yaratmaq üçün

əlaqə operatorları bitişik nöqtələrin ekvivalent dəyərə malik olub olmadığını müəyyənləşdirmək (belədirsə, onları yeni dəyərlə bir dəstə halına gətirmək).

məsafə operatorları hər bir hüceyrə ilə bir sıra hədəf xüsusiyyətləri arasındakı məsafəni ölçmək üçün

məkan məlumatlarının təhlili görselləşdirmək, araşdırmaq, modelləşdirmək və s.

Parazitlərin, zərərvericilərin və xəstəlik vektorlarının sahə tədqiqatları üçün CİS normal olaraq onların paylanması, yaşayış yerləri və epidemiologiyasının xəritələnməsi üçün strukturlaşdırılmış bir mühit kimi istifadə olunur. Parazitar xəstəliklərə qarşı böyük tətbiqetmələr arasında Gine Qurdlarının Aradan qaldırılması Proqramına (Clarke) hazırlıq işləri var və s. 1991), Lenfatik Filariazın Qlobal Eliminasyonu (ÜST, 1998a), Afrika Onkoserkazi İdarəetmə Proqramı (ÜST, 1998b), digər insan helmint infeksiyalarının yayılması və nəzarəti (Brooker) və s. 2000) və Afrikada yeni müdaxilələrə hazır vəziyyətdə malyariyanın ötürülmə intensivliyinin xəritələşdirilməsi (MARA, 1998 Omumbo və s. 1998 ).

Ən sadə şəkildə, GIS, nəzarət əməliyyatlarının planlaşdırılmasını və həyata keçirilməsini asanlaşdırmaq üçün topoqrafiya xəritələrində, çaylarda, yollarda, kəndlərdə, qəsəbələrdə və inzibati ərazilərdə mövcudluq / yoxluq və ya yayılma məlumatlarını örtmək üçün istifadə edilə bilər. Simple distance operators can be used to demarcate villages within flight range of the vector breeding sites – as in the case of Simulium vectors of Onchocerciasis in Latin America ( Clark və s. 1997 ). For many disease situations in developing countries it is simply not possible to map the distribution of the vector or disease in sufficient detail findings from localized surveys must be extended to a broader region by the development of predictive models of either vector or disease distribution. For example, GIS database query commands are commonly used to extract information from environmental databases for specific locations where entomological data are available.


Normalize the NDVI raster 0-255 - Geographic Information Systems

April 19th, 2021 by Andi Thomas

We recently received an email about adding country labels to a NEO image to better understand where certain data points are in the world. Here is one way to add labels to any NEO image in QGIS.

QGIS is a free and open-source Geographic Information System. If you do not have QGIS on your machine, there are copies available for download here: https://qgis.org/en/site/forusers/download.html.

We are now ready to add country labels to your NEO layer of choice. For this example, I am going to use the Nitrogen Dioxide (1 month) dataset.

This is a screenshot of my QGIS window showing the Nitrogen Dioxide (1 month) dataset.

There are several datasets available for free that provide the country border and label for the world. I keep one handy in my directory that was created by Bjorn Sandvik at thematicmapping.org. Download your own copy here: https://thematicmapping.org/downloads/world_borders.php. Once you have downloaded and saved the file somewhere on your machine, unzip the file and drag and drop the TM_WORLD_BORDERS-0.3.shp into your QGIS window.

Here is what my screen looks like when I drag and drop the TM_World_Borders shapefile into QGIS.

Now it is time to add labels.

Getmək Layer > Select Labeling and add Single Labels from the drop down in the Layer Styling window that pops up.

Here is where you will find Labeling under the Layer window. Here is what my screen looks like with the labels turned on and the map zoomed in to Europe.

The map may not have the aesthetic you need to see the labels clearly. The color and font of the labels can be changed in the Layer Styling window. The color of the countries shapefile can be changed by double-clicking on the box next to the shapefile label in the Layers window.

If the labels do not provide the granularity needed for each country, try adding one of these shapefiles from the Centers for Disease Control and Prevention to your map using the same process: https://www.cdc.gov/epiinfo/support/downloads/shapefiles.html.

Feel free to add any questions or tutorial suggestions in the comments below.

Raster and Floating Point GeoTIFFs: What is the difference?

December 23rd, 2020 by Andi Thomas

When you are considering which format to download for a NEO image, there are two GeoTIFF format options: GeoTIFF (raster)GeoTIFF (floating point). This can be confusing at first. Let’s take a look at both examples using the Chlorophyll Concentration dataset to distinguish the two formats.

Here is a screenshot showing the Downloads box with an arrow pointing to where you can select either GeoTiff format and a circle around where the raw data is available for download. This is the Aqua/ MODIS Chlorophyll Concentration GeoTIFF (floating point) image for the month of October 2020.

The image above is what downloads when you select GeoTIFF (floating point). This is a floating-point image file where each cell has a number with a decimal (ex. 1.1111). We call this format “data-like” for our purposes because it has been scaled and resampled as part of the processing of the original source data for NEO and the files are simplifications of the original data. Keep this in mind when you are using NEO imagery for analysis—our datasets should not be used for scientific research because they were not calibrated to the precision needed for scientific analysis. If you want to do your own processing for scientific research, choose the “Download Raw Data” option located in the Downloads box.

This is the Aqua/ MODIS Chlorophyll Concentration GeoTIFF (raster) image for the month of October 2020.

To simplify even further, the GeoTIFF (raster) above is an 8-bit color image. The values are stored as 8 bit grayscale and the color table is applied on-the-fly based on those values.

If you have any additional questions or need further clarification, please email us through the “Contact Us” button below.

Create and Apply the Right Color Palette in Adobe Photoshop for your Map Visualization (Part 3 of 3)

October 28th, 2020 by Andi Thomas

We have added the NEO color table to a grayscale image, learned how to accommodate the color blind easily with our maps, and now we are ready to build custom color palettes.

Adobe has an online color wheel that is helpful to use when surfing through different colors. If you are unsure what colors to start with, use the color wheel to give you a few ideas and follow these three steps as a guide for applying colors to your map with the wheel:

Step 1. Play around with the different color functions of the wheel to find a palette you would like to work with. You can work with a different hue and saturation of one color or look at three different complimentary colors. The radio buttons on the side of the wheel will help guide your decision-making. The RGB value for each color is at the bottom. Feel free to also mess with the lightness, hue and saturation sliders to get exactly what you want after the color wheel gives you an output. I decided to use the shades function and make a minty green palette. I plan to use these colors for land and then choose a contrasting color for the water.

My color wheel choice for this example.

Step 2. Open the color table back up for the grayscale image and use the same method as before: Select a couple of rows and change the colors to what you selected on the wheel, gradually moving from light to dark down the color table. Or, see what happens when you move from dark to light down the color table. Does it change the message of the map?

Step 3. Save your color palette for future use.

Alright, I know, that was short and easy. But not so fast, we have a couple more things to learn.

Follow these steps to make your own color palette in Photoshop:

Step 1. Open a new project for a clean slate to make palettes on. Do not worry about the canvas size as long as you have enough space to work with.

Step 2. Using the brush tool at a size that is easy to see, pick and paint a color on the canvas that you want on your map. I chose green because that is what I think of when I think of vegetation.

My Canvas so far.

Step 3. Now open the Color Picker back up and select a color that is lighter (less saturated) and move the hue up the color scale a little bit. Repeat this process but in the other direction for your third color. There is a tutorial by Greg Gunn that has a very similar process but is way more detailed. Please check out the video if you need a little more context on choosing the right colors.

I have selected and changed the hue and saturation to a part of the colors I am working with but this is not necessary. Do what is right for you.

Step 4. I have chosen a few colors to work with and am ready to add them to the color table. Clip the canvas to the colors you would like on your map. Go to Image, Mode, and select Indexed Color. Now open up the Color Table under Image, Mode. The colors you have chosen may be scattered around the table.

Step 5. Select one of your lightest colors on the table and add it to the 5th and 6th rows using the RGB values located on Color Picker. I may choose to add the same colors to three rows instead of two but this is a good starting place.

Step 6. Create a lighter color from the one you just filled in the 5th and 6th rows by toggling hue and saturation in Color Picker and add it to the 3rd and 4th rows. Repeat this process for rows 1 and 2.

Step 7. Now pick a second color that is darker than rows 5 and 6 and add it to rows 7 and 8. Repeat this process all the way down.

Step 8. Choose and apply a contrasting color for the last cell to represent water.

Here is what I came up with after Step 8.

Step 9. Save the color table somewhere that is easy to find and open up a new project with the grayscale NDVI map.

Step 10. Change the mode to Indexed Color and open up the Color Table.

Step 11. Load the color table you just created and see what you think. Feel free to change the colors up or maybe even repeat the steps with an entirely new set of colors. This tutorial is not available to get it right on the first try. We simply want to give you the tools you need to make the right map for your needs.

What do you think? Not bad for a first try?

Create and Apply the Right Color Palette in Adobe Photoshop for your Map Visualization (Part 2 of 3)

October 21st, 2020 by Andi Thomas

Now that we have finished part one and understand how the color table provided with each dataset on NEO is applied to each grayscale map, let’s focus on creating custom color palettes that are easy for everyone to see.

Color-blindness is a common condition that prohibits some individuals (mostly men) from distinguishing between colors. Especially, red and green.

“Roughly 1 in 20 people have some sort of color vision deficiency.”

U.S. Department of Agriculture

Luckily, there are plenty of resources that can help with creating color-blind friendly maps. Color Brewer is one great place to start for pairing colors together and we will use the site throughout this part of the series to guide our color decision-making.

If you are unable to see the number 74 in green, you may want to take a color blindness test. Image Credit: Wikipedia

Follow these steps to surf through Color Brewer and customize a color palette that suits your needs and the color-blind:

Step 1. Navigate to the Color Brewer site and make sure the colorblind safe box is selected.

Here is the Color Brewer site with a yellow circle around the colorblind safe button that should be selected.

Step 2. Select 9 classes so you will have plenty of colors to work with for an 8-bit dataset. An 8-bit dataset has 256 values (0-255) which means the color table we are working with is a 16 x 16 grid. This will make more sense when we are looking at the color table in Photoshop. You could select 8 classes so every two rows have a different color, but I like to graduate the color to one row at the end. I encourage you to play around with a few combinations and decide what is best for your map.

Step 3. Instead of the default HEX codes, Select RGB from the drop down.

Step 4. Pick a color scheme. I am going to choose the yellow to green combo under sequential multi-hue. It is similar to what we are displaying now but lighter and I really want the water to be more of a dark blue rather than black.

Step 5. Go back to Photoshop and open the Color Table window again (Image, Mode, Color Table…). To make it easier, my Color Brewer window and Photoshop application are sitting side-by-side on my screen.

My desktop set-up for this tutorial.

Step 6. Select two rows at a time on the color table and change the color using the RBG values that are on Color Brewer for the scheme you selected. Repeat this step as you move down the color bar until you get to the last two rows. Then you can graduate to one row and use the darker colors at the bottom of the scheme for the last two rows. The very last color (0) on the table is the map’s water (technically, it is areas of no data that are also where the oceans are). I chose to make the water a dark blue color rather than black.

Here is what the color table looks like after I have customized the palette and applied it to the map.

Step 7. Save the color table you have created to load to another map if you like what you see.

Spend a little more time trying out different colors and using the options Color Brewer provides. Keep in mind, the map represents a dataset and in this case we are trying to show areas of less and more vegetation. Choose wisely on the colors you want to represent places with dense and sparse vegetation. Next time we will look at creating a custom color palette from scratch and applying it to your map.

Create and Apply the Right Color Palette in Adobe Photoshop for your Map Visualization (Part 1 of 3)

October 16th, 2020 by Andi Thomas

Applying the right color palette to an image is crucial to conveying the right message to your audience. There are obvious no-nos in map-making like, do not color land and water blue because it may look like your entire map is water. Or, do not color a disaster map green because it may convey a message of positivity. This tutorial series will show you how to apply and save different color palettes, but it is important to look into why different colors are chosen, basic color theory, and best practices for choosing the right palette. There is a 6-part series on Earth Observatory published several years ago called the “Subtleties of Color” that is still a great base to start from before making and applying your own palettes. If you already feel comfortable with your knowledge and use of colors, let’s make color palettes!

Each NEO image is natively grayscale and the color table is applied in post-processing to display the colored image on each dataset’s page. Underneath the image is a downloadable Adobe Color Table (ACT) that can be saved and used to create and save color palettes for other grayscale images.

Let’s look at the Vegetation Index (NDVI) MODIS imagery as an example for applying a ready-made color table for the dataset following these steps:

Step 1. Download and save the color palette displayed for the NDVI imagery (filename: modis_ndvi.act) and a grayscale PNG at the temporal and spatial resolution of your choice. I saved the files to my desktop so they would be easy to find.

The yellow circles indicate where the color table and grayscale radio button are located on the vegetation index page.

Step 2. Open Photoshop and load the grayscale NDVI image into a new project.

Step 3. Make sure the swatches window is open. There should be a check mark next to “Swatches” and the window should appear on the top right.

Step 4. In the swatches window, expand the hamburger button on the right and click Import Swatches

Step 5. Navigate to where you saved the ACT file and open the file. You should now see the color palette in the Swatches window under its filename and you will be able to access it later and even reuse some of the colors for your own palette creations.

Screenshot of Photoshop with the grayscale image and ACT file loaded.

Step 6. Now go to Image, Mode, and select Indexed Color. Keep the default settings and click Ok. Your image name should have changed to “index”.

Step 7. Go back to Image, Mode and select Color Table…

Step 8. Seçin Custom from the drop-down menu at the top of the window and click Load…

Step 9. Navigate to the modis_ndvi.act file, select the file, and click Ok.

Step 10. The color applied to the map should now look the same as what is on our site for the MODIS Vegetation Index dataset.

Here is what my Photoshop screen looks like after step 5.

Now we are ready to move on to part 2 where we will learn how to apply a custom color palette that is color-blind friendly. See you then!

How to Visualize NEO Imagery in Excel

September 15th, 2020 by Andi Thomas

Did you know you can use Excel to visualize raster datasets? If not, follow this short tutorial and find out how.

Let’s use the cloud fraction imagery NEO provides for this example.

Step 1. Go to the cloud fraction imagery page and choose the CSV for Excel download option from the drop-down at 1.0-degree resolution for a month and year of your choice. I am going to download the latest monthly image for August 2020.

This is the cloud fraction imagery page with green arrows pointing to the selections you need to make when you download the CSV file.

Step 2. Open the CSV in Excel and select all data except for the latitude and longitude row and column (which are the first row and first column).

All of the cells except for the latitude and longitude row and column should be selected in this step. Here is an example of what the Excel sheet will look like.

Step 3. Find and replace all 9999 values with an empty cell. I pressed the space bar a couple of times in the Replace with: cell. Once you click the Replace All button, an alert message will come up, and you will notice the cells that previously had 9999 are now empty.

This is an example of where to find and replace the 9999 values. This alert will come up once you hit the Replace All button.

Step 4. From the Excel home tab: Select conditional formatting, color scales, and choose one of the 2-color scheme options available və ya select More Rules… and choose a different minimum and maximum value color. I am going to choose blue for the minimum color and white for the maximum color to create a look similar to what is available on the cloud fraction page.

Here is where you need to be for step 4. For the new formatting rule, I selected blue for the minimum color and white for the maximum color. The maximum value corresponds to the highest cloud fraction while the minimum value represents low to no cloud cover.

Step 5. Zoom out using the slider on the bottom right side of the excel window and you will notice the global imagery taking shape.

Voila! There is your image coming to life in Excel. Now it is time to zoom in and investigate the cloud fraction values at different latitudes and longitudes. You may also want to try repeating the process at a higher resolution.

I remember learning the difference between raster and vector data in my entry-level GIS courses. Vector data is all of the point, line, and polygon data while raster data is made of cells or pixels. I wish my professor would have shown me how to visualize raster data in Excel at the time to really grasp cell values that make up the imagery we see as a whole. It certainly would have been easier to process!

Please share what you process in the comments below. We would love to hear any feedback or suggestions you may have.

Visualizing Changes in Nitrogen Dioxide Levels During the COVID-19 Pandemic

August 12th, 2020 by Andi Thomas

On March 11, 2020, COVID-19 was classified as a global pandemic by the World Health Organization. That same month, all New York City non-essential businesses were ordered to close by the governor’s office and several residents fled the city to get away from the rapidly spreading virus. There is typically a significant amount of nitrogen dioxide (NO2) in the air from the burning of fossil fuels during mass transportation, especially in larger cities like New York City. But, because all of the non-essential businesses were closed, along with many transportation lines, there was a significant decrease in NO2 in March 2020 compared to previous years.

The data probe function in the NEO analysis tool shows a significant decrease in NO2 levels in March 2020 compared to March 2018 & 2019.

By adding the Nitrogen Dioxide dataset to the analysis tool for March 2018, 2019 & 2020, we can compare NO2 levels over one geographic coordinate using the data probe function or over a distance using the plot transect function. For more information on how this is done, check out our post on NEO Analysis in 10 Easy Steps. According to these New York City snapshots, NO2 levels decreased by roughly half in comparison to the previous 2018 and 2019 average NO2 levels when city operations were normal.

A quick draw of a transect line using the plot transect function shows a decrease in NO2 levels in March 2020 compared to March 2018 & 2019 over New York State.

The Governor of Sao Paulo, Brazil, Joao Dorio, also ordered a shutdown of the state for two weeks at the end of March 2020 to help slow the spread of the virus. The NO2 levels in April 2020 in comparison to the previous two years also decreased by nearly half.

Here is a snapshot of South America with the data probe floating over Sao Paulo, Brazil to compare NO2 levels in April 2018, 2019 & 2020.

Global human behavior changed rapidly as COVID-19 spread across the globe and the change can be detected from satellites in space. NASA scientists are monitoring several atmospheric indicators globally, including NO2, to read a global pulse on how our atmosphere is responding. Although NEO datasets are heavily processed for visualization and should not be used for scientific analysis, we can still qualitatively see changes on a global scale.

Global snapshot of NO2 levels in March 2020.

Analysis: Pacific life – how is it related to ocean temperature?

August 3rd, 2017 by Stephanie Uz

Note that these examples are intended for curious people looking for hands-on Earth data exploration. Primary scientific research will require additional analyses through other methods. For the basics on how to use the NEO tool, see ‘Analysis tool in 10 easy steps’.

Here we explore phytoplankton blooms and their relationship to sea surface temperatures, with background information featured in ClimateBits: Phytoplankton.

Recent studies link warmer waters off the U.S. west coast to more frequent toxic algae blooms, negatively impacting the marine food web and the economy. In 2014-16, the waters off the west coast were unusually warm and were famously dubbed the ‘warm blob’ by the press. The warmer ocean impacted weather on the west coast and was linked to lower fish catches and stressed sea life.

A toxic algae bloom in 2015 extended from California to Alaska resulting in the closure of the Dungeness crab fishery and an economic decline of $100 million, according to the Fisheries of the U.S. Report, 2015. Sea lion strandings increased, including a starving baby sea lion that seated itself at a San Diego restaurant in early 2016, weighing half of what it should for its age according to the Sea World rescue team.

Following the strong El Niño of 2015-16, ocean temperatures off the west coast returned to ‘normal’. Here we use NEO to explore these reports. How do the satellite sea surface temperature records compare before, during, and after the warm anomaly?

Figure 1. North Pacific Sea Surface Temperatures during February 2013 (red), February 2015 (green), February 2017 (blue). Transect values from NW to SE along the U.S. west coast.

A NEO comparison of ocean surface temperatures for the month of February before the warm anomaly in 2013 (red), during the warm anomaly in 2015 (green), and after the warm anomaly in 2017 (blue). Along the entire west coast – from Alaska to the Baja Peninsula – temperatures during the warm blob (February 2015) were roughly 3 degrees C (or 5 degrees F) warmer compared to before (February 2013) and after (February 2017).

Temperatures off of Alaska (Distance

0km along the transect) were around 7C in February 2013 and 2017, but around 10C in 2015. Off of southern California (Distance

2000km), temperatures were around 13C in February 2013 but 16C during the warm blob in 2015. West of the Baja Peninsula (Distance

3500km), temperatures were around 21C in 2013 and 2017, but 25C in 2015.

How do the temperature changes relate to ocean biology measured by satellites?

Figure 2. North Pacific chlorophyll concentrations during February 2013 (red), February 2015 (green), and February 2017 (blue) plotted in a histogram for the area west of California outlined in white.

Chlorophyll concentrations indicate the amount of phytoplankton blooming. More phytoplankton means more food for fish and the rest of the marine food web. In the chlorophyll histogram in Figure 2, chlorophyll during the warm blob in February 2015 (green) had lower values (around 0.1 mg/m 3 ) more frequently than the other two years. The waters were almost 10 times more productive (approaching 0.9 mg/m 3 ) in February 2013 (red) compared to the other two years. Recall that February 2013 had the coolest water.

Usually, cooler surface water means that the water has recently been at depth — below the sunlit surface. Deep water containing unused nutrients can support new phytoplankton blooms. Thus, cooler water is generally associated with higher chlorophyll concentrations. How do the two data sets compare along the west coast before, during, and after the warm blob?

Here we compare sea surface temperature and chlorophyll along a transect from NW to SE off the coast of California for February 2013, 2015, 2017.

Figure 3. Sea surface temperature (red) and chlorophyll (green) plotted along the white transect line in the large panel, from northwest to southeast for February 2013 (left), February 2015 (middle), February 2017 (right) – before, during, and after the warm blob, respectively.

In all of the plots in Figures 3, sea surface temperature and chlorophyll demonstrate their inverse relationship. Cooler, more productive water to the north is contrasted with warmer, less productive water toward the south. The peaks in the chlorophyll (green line) correspond to phytoplankton filaments typically associated with nutrient entrainment along the boundaries of circulation features, such as in the California Current system. Note that over the 2000km transect from northwest to southeast, temperatures changed about 10C and chlorophyll concentrations changed more than an order of magnitude (10x). Also notice that February 2013 (Figure 3, left) had chlorophyll peaks reaching concentrations around 5 mg/m 3 . During the warm anomaly in 2015, chlorophyll concentrations were never above 0.9 mg/m 3 . After the demise of the warm blob, sea surface temperatures cooled in 2017 (Figure 3, right) compared to 2015 (Figure 3, middle), chlorophyll concentrations remained low (< 0.9 mg/m 3 ) and were certainly much lower than in 2013.

Diving into the 2017 data a bit more through scatter plots, we can highlight the geographical distributions of different data combinations.

Where are the highest chlorophyll concentrations?

Figure 4. Scatter plot of sea surface temperature (bottom axis) versus chlorophyll (left axis) during February 2017 for the region within the white line. The highest chlorophyll values (magenta box on the scatter plot) are highlighted in magenta on the map. Note that the values at the very top of the plot (74mg/m 3 ) are outliers or artifacts.

Where are the warmest waters within the area outlined in white?

Figure 5. Same plot as Figure 4, with the magenta area highlighting a different distribution of temperature (16-21C) and chlorophyll values (0.05-0.2 mg/m 3 ).

Where are the coolest waters within the area outlined in white?

Figure 6. Same plot as Figure 4 and 5, with the magenta area highlighting a different distribution of temperature (7-10C) and chlorophyll values (0.2-0.8 mg/m 3 ).

Not surprisingly, the coolest waters are in the north the warmest waters are in the south and the most productive waters with the highest chlorophyll values are next to the coast where nutrients were plentiful. Recall that January and February 2017 was a time of plentiful rain and snow on the west coast (a.k.a. atmospheric rivers that led to much run-off from land).

Note: This blog was written in response to a request for an analysis comparing sea surface temperature and chlorophyll. If there is an analysis you would like to see in this blog, please let us know!

Analysis: Hot in the city

May 30th, 2017 by Stephanie Uz

As the northern hemisphere approaches summer, we explore land surface temperatures that are featured in ClimateBits: Urban Heat Islands.

Note that these examples are intended for curious people looking for hands-on Earth data exploration. Primary scientific research will require additional analyses through other methods. For the basics on how to use the NEO tool, see ‘Analysis tool in 10 easy steps’.

Urban Heat Islands are places on land where buildings, roads, and other impervious surfaces trap more heat than the surrounding rural area. During summer, an urban place like New York City can be 4°C (7°F) or more warmer than surrounding rural areas. Vegetation plays a cooling role through transpiration. Cities such as Minneapolis, Chicago and St. Louis — where most trees were cleared to make way for pavement and development — are urban heat islands surrounded by cooler forests.

Demonstrate seasonal changes

Load March, June and September, 2016 for land surface temperature [day]. These are found under the ‘Land’ category. Note the difference between ‘land surface temperature’ and ‘average land surface temperature’ data sets, the latter being climatology. We use the former in this example. These are MODIS/Terra observations collected since February, 2000 at daily, 8 day and monthly temporal resolution. Here we compare [day] temperatures.

The warmest land is colored yellow coolest land is colored light blue. Hottest places are in the tropics and during summer in areas where the land is driest. Coldest places are covered in snow and ice. Black areas are missing data — over the ocean or due to cloud cover or lack of sunlight. The values along the white transect on the large map are plotted for March (red), June (green), September (blue).

The white line drawn from south of Lake Michigan east to New York City shows that the transect was about 10°C cooler in March compared to June and September in 2016. As the month of maximum sunlight, June would be expected to be warmest, yet September temperatures were not much cooler due to the thermal inertia of the land.

Compare day/night seasonal changes

Now load March, June and September, 2016 for land surface temperature [night]. Night temperatures are also coldest for places covered in snow and ice, but have important differences from daytime temperatures for warm areas.

The same line drawn from south of Lake Michigan east to New York City corresponds to the plot of nighttime temperatures for March (red), June (green), September (blue). September temperatures were again very close to those in June, especially for the urban areas at either end of the transect (near Chicago and New York City).

Compare urban and rural day/night temperatures

Looking at a weekly map from the end of June, we can compare day and night temperatures with a focus on urban versus rural New York.

Land surface temperature [day] in red and [night] in green for the week of June 26-July 4, 2016. Histograms show temperature distributions around urban New York City (left) compared to rural upstate New York (right).

Related Reading

Analysis: Reflections on the Blue Planet

April 21st, 2017 by Stephanie Uz

To better engage you on critical Earth science topics, NEO launched a new web-based analysis tool. This Analysis Blog explores NEO data sets used in ClimateBits: Albedo. Albedo is the fraction of incoming solar energy that is immediately reflected back to space.

Note that these examples are intended for curious people looking for hands-on Earth data exploration. Primary scientific research will require additional analyses through other methods. For the basics on how to use the NEO tool, see ‘Analysis tool in 10 easy steps’.

Reflected shortwave radiation

Categorized under ‘Energy’, maps of reflected shortwave radiation show the amount of solar or shortwave energy (in Watts per square meter) reflected by the Earth. These are CERES observations combined with MODIS measurements, available since July, 2006. Brighter colors indicate more reflection while dark blue indicates the least reflection. The brightest, most reflective regions are associated with clouds, snow and ice. Because clouds move quickly, they are best observed in daily maps. The 8 day and monthly composites mute transient weather patterns. More persistent features, such as polar ice caps, can be observed and compared at longer time increments. The least reflective regions are dark surfaces without cloud cover, such as forests and the ocean. The poles are dark during their winters because of the absence of sunlight then.

Reflected Shortwave Radiation (in Watts per square meter). The pale green to white regions show where more sunlight is reflected dark blue regions are where the least sunlight is reflected.

Land albedo

Categorized under ‘Energy’ as well as ‘Land’, maps of albedo show how reflective land surfaces are from 0, meaning no reflection, to 0.9, indicating nearly all incoming solar energy is reflected. These maps are derived from MODIS measurements, available since February, 2000 at 16 day and monthly composites. Dark blue indicates the least reflection and white indicates the most. Black areas are missing data – over the ocean or due to cloud cover or lack of sunlight.

Land albedo scales from 0 (dark blue) meaning no incoming sunlight reflected to 0.9 (white) meaning almost all sunlight reflected (1 would be all). Black areas mean “no data,” either over ocean or because persistent cloudiness prevented a view of the land surface. Notice the highest albedos are due to ice caps, glaciers and snow-cover.

Comparison: different surfaces

Africa is a continent with the Sahara Desert north of savannah grasslands and then forests with thick vegetation. To see how different land cover impacts albedo and reflected radiation, we compare them during January, 2017. We limit our analysis to the area delineated by the yellow box (below, left). İstifadə edin Data ProbePlot transect to explore the whole geographic area, comparing and contrasting values of albedo and reflected radiation.

Left: Map of the region selected as the yellow box. Right: a comparison of albedo and reflected radiation from north to south along the transect (white line).

Notice that albedo and reflected radiation are highest over the Sahara Desert, except for the dark spot associated with the Tibesti mountains in northern Chad. Albedo and reflected radiation decline over the savannah grasslands, which are darker. Farther south, over the tropical rain forest, however, reflected radiation starts to rise while albedo continues to decline – likely due to evapotranspiration that promotes cloud formation.

Left: region selected (white box). Right: scatter plot of albedo versus reflected radiation within that region.

A scatter plot of the transition zone between desert and savannah demonstrates the direct relationship between albedo and reflected radiation.


H. Pan-sharpening


  Click image to expand

Band 8 is panchromatic for Landsat 7 (EMT+ sensor) and Landsat 8 (OLI sensor).


  Click image to expand

Panchromatic sharpening is a way to increase the detail (spatial resolution) of an image. In a nutshell, a high-resolution gray-scale panchromatic band is combined with lower-resolution &ldquocolor&rdquo multispectral bands. The result has visual advantages of both&mdashhigh resolution multisprctral images.

Several multispectral satellite sensors have a &ldquopanchromatic&rdquo band&mdasha single band that covers visible wavelengths (exact wavelength range varies by sensor, see graphic). Panchromatic sensors can &ldquoafford&rdquo to have higher spatial resolution because they capture more energy (from a wider wavelength range) and lump that brightness into one image file. Dividing visible light into 3 bands (RGB) requires 3 times as much storage space.

Publicly available commercial satellite imagery has panchromatic resolutions as fine as 31 cm (WorldView-4 satellite, operated by DigitalGlobe https://www.digitalglobe.com). Landsat offers free 15 meter panchromatic resolution.

The following graphics show a pan-sharpened Landsat 8 image of Malibu California. Malibu Images Credit: Charlie Loyd, MapBox, published June 14, 2013. https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-bands/


  Click image to expand

Normal Color, not pan-sharpened (30 m).


  Click image to expand

Normal Color, after pan-sharpening.

Click the Bubbles Above or the Double Arrows ( ) to Explore this Principle

Plotting Points From a CSV File

The CSV file in this example is HERE.

Plotting Polygons From a Shapefile

The data for this example is in 2017-state-data.zip.

Your browser does not support the video tag.

  • Download a zip file of a shapefile provided by the City of Denver Open Data Catalog containing data from the 2009-2013 American Community Survey for census tracts in Denver
  • Unzip the data and create a choropleth map based on some variable in the data that you find interesting. Please avoid using a variable on race unless you have some overriding need to do so http://data.denvergov.org/dataset/city-and-county-of-denver-american-community-survey-tracts-2009-2013
  • Export the choropleth to a PNG file and paste that into a word processing document
  • Describe the variable you used and provide some basic interpretation of any patterns that you see (or don't see). Indicate whether or not this showed you anything unexpected.
  • Provide metadata indicating the data source, the URL, the date of download, and any other metadata you think might be useful for some potential future user of this data or map
  • Give your documents a meaningful title along with your name and the date
  • Save your document as a PDF and submit it on Canvas

Optionally, if you would prefer to use ArcGIS Online, view the tutorial below.


Videoya baxın: NDVI - Normalized Difference Vegetation Index (Sentyabr 2021).